Most Electron Heat Transport Is Not Anomalous;
It Is a Paleoclassical Process in Toroidal Plasmas

J. D. Callen*

University of Wisconsin, Madison, WI 53706-1609, USA

(Received 9 February 2004; revised manuscript received 20 April 2004; published 9 February 2005)

It is hypothesized that radial electron heat transport in magnetically confined toroidal plasmas results from paleoclassical Coulomb collision processes (parallel electron heat conduction and magnetic field diffusion). In such plasmas the electron temperature is equilibrated along magnetic field lines a long length \(L = \frac{r}{\pi R q_0} \approx 1 \times 10 \) times the magnetic field diffusivity \(\eta / \mu_0 = v_e (c / \omega_p)^2 \).

DOI: 10.1103/PhysRevLett.94.055002

PACS numbers: 52.25.Fi, 52.35.Vd, 52.55.Dy, 52.55.Fa

For more than three decades the outstanding and pervasive mystery in pursuit of magnetic fusion has been [1–4]: what causes “radial” (across magnetic field lines) electron heat transport in magnetically confined toroidal plasmas such as tokamaks. Because the experimentally inferred electron heat transport exceeds the theoretical classical [5] (gyromotion-induced and neoclassical [5] (drift-orbit-induced) collisional transport by factors of about 10^4 and 10^2, respectively, it is called “anomalous.” Since this is often the dominant radial transport process, resolving this conundrum is very important both for understanding plasma confinement in present experiments and for developing accurate plasma performance predictions for the planned international thermonuclear experimental reactor (ITER) [6].

Salient properties of radial electron heat transport observed in tokamak plasmas over the past three decades are [1–4]: (1) The experimentally inferred effective radial electron heat diffusivity \(\chi_e \) is of order 2 m^2/s (to within a factor of 10) in a wide variety of tokamak plasmas. (2) The inferred \(\chi_e \) is typically 3–30 times the magnetic field diffusivity \(\eta / \mu_0 \). (3) \(\chi_e \) usually increases from the hot plasma core toward the cooler edge. (4) Tokamak plasmas heat up to the “low collisionality,” banana-plateau regime [5]. (5) In high density Ohmically heated plasmas \(\chi_e \) is inversely proportional to the electron density (so-called Alcator scaling [7]). Some mysterious properties are: (6) The \(\chi_e \) can be up to an order of magnitude smaller in the vicinity of low order rational surfaces [8], and “internal transport barriers” often form there [9,10]. (7) The \(\chi_e \) can also be smaller just inside a magnetic separatrix at the plasma edge [10]. This Letter provides a new model for all these characteristics of radial electron heat transport based on the dominant Coulomb collision processes in low-collisionality toroidal plasmas.

The earliest in time and most primitive (“paleo”), dominant Coulomb-collision-induced transport processes in magnetically confined plasmas will be called paleoclassical processes. They occur on the electron collision time scale \(1 / \nu_e \). The dominant transport processes are parallel electron heat conduction and magnetic field diffusion. (Classical and neoclassical diffusivities [5] develop on the same time scale but are smaller than the magnetic field diffusivity for most low electron pressure plasmas.)

On the \(1 / \nu_e \) time scale, electron heat conduction equilibrates the electron temperature over parallel (to the magnetic field) \(\omega_B \) distances of order the electron collision length \(\lambda_e \equiv \nu_{Te} / \nu_e \) in which \(\nu_{Te} \equiv (2T_{e} / m_e)^{1/2} \). Magnetic field diffusion [see (8) below] is induced by the plasma resistivity \(\eta \). It causes magnetic field lines to diffuse perpendicular to \(\mathbf{B} \) with a diffusion coefficient \(D_{\eta} \approx \eta_0 / \mu_0 \equiv \nu_e (c / \omega_p)^2 \sim (\Delta x)^2 / \Delta t \), which implies a diffusive radial step \(\Delta x \approx \delta_e \equiv c / \omega_p \) [the electromagnetic skin depth, in which \(\omega_p \equiv (n_e e^2 / m_e \epsilon_0)^{1/2} \) is the electron plasma frequency] in a collision time \(\Delta t \approx 1 \nu_e \). Thus, it will be hypothesized that paleoclassical processes equilibrate \(T_e \) over a collision length \(\lambda_e \) (typically \(\sim 200 \) m) along a field line that is diffusing radially about \(c / \omega_p \) (\(\sim 1 \) mm)—all in a collision time \(1 / \nu_e \) (\(\sim 10 \) \(\mu s \)). The parallel equilibration can be limited by the finite length of rational field lines in toroidal magnetic systems and by the parallel length over which field lines are diffusing.

In axisymmetric toroidal magnetic confinement systems the helical field lines form nested toroidal surfaces called magnetic flux surfaces. The “winding number” of field lines in tokamak is defined by a “safety factor” (for kink stability) \(q(r) \) in which \(r \) is the (cylindrical-like) radial label of the flux surface; it typically ranges from order unity in the plasma core to \(\sim 3 \) at the edge. Flux surfaces are rational or irrational depending on whether or not \(q \) is the ratio of integers \((m, n) \):

\[
q(r) = \frac{m}{n}, \text{ rational surface, } \\
\ne \ne \frac{m}{n}, \text{ irrational surface. }
\]

The irrational surfaces form a dense set while the rational surfaces are radically isolated from each other.
Rational surfaces are of interest because their helical magnetic field lines close on themselves after mtoroidal (or n poloidal) transits. The length of such field lines on a \(q(r_s) = q_s = m/n \) rational surface in a large aspect ratio (\(\epsilon = r/R_0 \ll 1 \)) tokamak is \(2\ell_s = 2\pi R_0 q_s n \), in which \(R_0 \) is the major radius of the torus. Magnetic field lines diffuse for radial distances \(x \) off a rational surface greater than the \(\epsilon m \) skin depth (\(|x| > \delta_e \)), but are not created and do not diffuse for \(|x| < \delta_e \)—see discussion after (7) below. In a sheared magnetic field the half length \(\ell_\delta \) along \(B \) [see (6) below] over which field lines are diffusing is obtained [11] from \(1 > k_s(\ell)\delta_e / \epsilon \), where \(k_s = k_0 \ell / L_S \), \(k_0 = n q / r \), and \(1/L_S = q_r / R_0 q_s^2 \). Setting \(\ell_s = \ell_\delta \) determines a maximum \(n \) (typically \(\approx 10 \)) for field lines diffusing radially over their entire length:

\[
n_{\text{max}} = \frac{1}{\sqrt{\pi \delta_e q'}} \left(\frac{\epsilon}{c} \right) q' = \left| \frac{dq}{dr} \right|_{r_s}. \tag{2}
\]

The length of such rational helical field lines is

\[
2\ell_{\text{max}} = 2\pi R_0 q_s n_{\text{max}}, \quad \text{maximum field line length.} \tag{3}
\]

However, in the vicinity of a low order rational surface \(q^* = m^*/n^* \) (e.g., \(3/2 \)), the relevant \(n = n^* \) and the field line length is short (\(2\ell_{\text{max}} = 2\pi R_0 q^* n^* \)).

The effective radial electron heat diffusivity \(\chi_e \) can now be estimated phenomenologically. As a magnetic field line diffuses radially it will be hypothesized to carry with it the electron heat “contained” on the field line. The half length \(L \) over which the electron temperature is equilibrated is

\[
L = \min(\ell_{\text{max}}, \lambda_e, \ell_{n^*}). \quad \text{equilibration length.} \tag{4}
\]

Because \(L \) is longer than the poloidal periodicity half length of magnetic field lines \((\pi R_0 q) \), the paleoclassical (superscript pc) electron heat diffusivity in a torus is a multiple \(M \) larger than the magnetic field diffusivity:

\[
\chi_e^\text{pc} \sim M \frac{\eta}{\mu_0}, \quad M \equiv \frac{L}{\pi R_0 q}. \tag{5}
\]

which, except for constants, is this Letter’s main result.

To be more precise, the effects of paleoclassical processes in the vicinity of a medium order (\(1 < n \leq n_{\text{max}} \approx 10 \)) rational helical field line need to be quantified. Because the relevant properties of magnetic field lines are their poloidal, toroidal, and helical periodicities, field curvature and torsion can be neglected. However, magnetic shear is important. Thus, a simple “sheared slab” model can be used to represent the magnetic field in the vicinity of a helical field line on a rational surface:

\[
B = B_0(\hat{e}_z + (x/L_S)\hat{e}_r) = B_0\hat{e}_z + \hat{e}_r \times \nabla \psi. \tag{6}
\]

(A companion, more detailed paper [11] uses axisymmetric toroidal geometry magnetic flux coordinates.) Here, \(B_0 = \) constant is the magnetic field strength, \(\hat{e}_r = \nabla / \lVert \nabla \psi \rVert \) is a unit vector along the rational field line, and \(\psi \equiv B_0x^2/2L_S \) is the magnetic flux function associated with the (small) magnetic shear. For a large aspect ratio tokamak the shear length is \(L_S \approx R_0 q / s \) with \(s = q_r / q \). Magnetic shear is caused by a (parallel) current flowing in the plasma: \(J = \nabla \times B / \mu_0 = \hat{e}_r \nabla / \mu_0 \). The preceding properties are evaluated on the rational surface where \(x = r - r_s \) vanishes.

The relevant magnetic field evolution equation can be obtained from Faraday’s law together with a plasma Ohm’s law of \(\mathbf{E} = -\nabla \mathbf{B} + \eta / (\mu_0 n^*) \mathbf{J} \). The solution for the \(\phi \) field satisfying \(\nabla \times \mathbf{B} = \mu_0 \mathbf{J} \) and the fact that for the \(\mathbf{B} \) in (6) \(\partial / \partial t = -\nabla \times (\hat{\psi}/\partial t) \hat{e}_z \) setting the coefficient of the \(\hat{e}_z \) component inside the curl in the resultant equation to a constant yields the evolution equation for magnetic flux \(\psi \):

\[
(1 - \delta_e^2 \nabla^2) \frac{\partial \psi}{\partial t} = \frac{\eta}{\mu_0} \nabla^2 \psi - \frac{\partial \Psi}{\partial t}. \tag{7}
\]

Here, the constant of the spatial integration is \(\partial \Psi / \partial t = E_x^\prime (t) \), the inductive axial (toroidal) electric field, which is the “source” of magnetic flux \(\psi \) and hence field lines. This term represents the effect of the magnetic flux change in the central solenoid of a tokamak; it is negative so the Poynting flux is in the \(-x\) direction—to balance, in equilibrium, the resistivity-induced magnetic flux diffusion [first term on the right in (7)] and thereby produce a stationary magnetic field on the resistive time scale. Resistive diffusion of the magnetic flux \(\psi \) is induced by the effect of the (parallel) plasma resistivity \(\eta \rightarrow \eta / \mu_0 \) on the (parallel) current density \(J_x \equiv (1/\mu_0) \nabla^2 \psi \).

Since \(\eta / \mu_0 \rightarrow \nu_e \delta_e^2 \), for scale lengths \(x \) less than \(\delta_e \) in (7) where the \(\delta_e^2 \nabla^2 \) term dominates on the left: the magnetic field diffusivity becomes negligible, the solution for \(\psi \) becomes spatially constant [11], and hence no magnetic field lines are produced (i.e., \(\hat{e}_r \times \nabla \psi \rightarrow 0 \)) or diffuse in this region. The paleoclassical analysis will thus be restricted to \(|x| > \delta_e \) and interpret that \(\psi \) represents diffusing field lines only for \(|x| > \delta_e, |\ell| \leq \ell_{\text{max}} \).

Neglecting the \(\delta_e^2 \nabla^2 \) operator (assuming \(x^2 > \delta_e^2 \) in (7) and the advective \(\nabla \cdot \nabla \psi \) term, which is negligible [11] compared to the flux motion induced by \(D_\eta \), the equation for \(\psi(x, t) \) becomes a simple diffusion equation

\[
\frac{\partial \psi}{\partial t} = D_\eta \frac{\partial^2 \psi}{\partial x^2} - \frac{\partial \psi}{\partial t}, \quad D_\eta = \frac{\eta}{\mu_0}. \tag{8}
\]

Since the time scales of interest are long compared to the electron gyrofrequency, the electron kinetics is usually described by a gyro-averaged kinetic equation which is called a drift-kinetic equation [5]. In the usual drift-kinetic equation magnetic flux surfaces and hence field lines are assumed to be stationary—but (8) indicates \(\psi \) obeys a diffusion equation. In particular, consider the evolution of the (small) magnetic flux (bundle of field lines) \(\psi(x, t) \) traversed by the gyromotion of an electron gyrat-
ing at its gyroradius $q_e \equiv v_{\perp}/\omega_{ce} \sim 0.1 \text{ mm}$ around a magnetic field line. Substituting $\psi \rightarrow \psi_0 + \delta \psi(x, t)$ with $\psi_0 \equiv \beta_0 \alpha x^2/2L_S$ into (8) and using the equilibrium relation $D_\eta \delta^2 \psi_0/\delta x^2 = \eta_j j_z = E_z^2 = \rho \Omega/\delta t$, one obtains

$$\partial \psi/\partial t = D_\eta \delta^2 \psi/\delta x^2. \quad (9)$$

Since the electron gyroradius is small ($q_e \ll \delta_z$), $\delta \psi$ can be taken to be a unit delta function initially at $x = x_0 > \delta_z$; for this initial condition the solution of (9) is

$$\delta \psi(x, t) = e^{-(x-x_0)^2/4D_\eta t}/(4\pi D_\eta t)^{1/2}, \quad t \geq 0. \quad (10)$$

This small, initially localized flux diffuses radially with a radial spreading that grows linearly with time:

$$\langle (x-x_0)^2 \rangle = \int_{-\infty}^{\infty} dx (x-x_0)^2 \delta \psi(x, t) = 2D_\eta t. \quad (11)$$

Thus, because of D_η, as time progresses a bundle of field lines initially located at $x = x_0$ assumes a probability distribution given by (10) whose radial spread grows according to (11)—even for a stationary magnetic field.

Because of symmetry in z, $p_z = mv_z + q_e A_z$ is a constant of “collisionless” electron motion. For the B in (6), $A_z = -v\psi$; hence, $p_z = mv_z - q_e \psi$. However, the magnetic flux ψ traversed by the electron gyromotion diffuses radially. A key hypothesis of the paleoclassical model is that as such bundles of field lines diffuse radially they carry electron guiding centers with them. This causes the radial coordinate (x or ψ) of the electron guiding center to become a “stochastic” variable in the drift-kinetic equation, which implies (for $x^2 > \delta_z^2$, $\ell^2 \leq \ell_{max}^2$) an electron guiding center Fokker-Planck diffusion coefficient

$$\langle (\Delta x)^2 \rangle/\Delta t \equiv \langle (x-x_0)^2 \rangle/\Delta t = 2D_\eta. \quad (12)$$

and a vanishing “drag” coefficient: $\langle \Delta \psi \rangle/\Delta t = 0$.

These stochastic electron diffusion effects are taken into account [12,13] by adding a spatial Fokker-Planck diffusion operator to the usual drift-kinetic equation [5]:

$$\partial f/\partial t + v_\parallel \partial f/\partial \ell_\phi = C(f) + D(f). \quad (13)$$

In this magnetic-field-diffusion-modified drift-kinetic equation (MDKE), $f(x, v, t) \rightarrow f(\psi, \ell, v_\parallel/v, v, t)$ is the distribution function, ψ is the radial field line label of the electron guiding center position, ℓ is the distance along a field line, $v_\parallel \equiv v \cdot B/B$ is the particle speed along B, and C is the Coulomb collision operator. Particle drifts off field lines have been neglected because in magnetized axisymmetric toroidal plasmas their radial excursions ($\Delta x \sim q_e/\ell_{max}^{1/2}$) are small compared to the magnetic field diffusion scale length $\delta_z \equiv c/\omega_p$ for the usual low electron pressure situations where $\beta_e < e/\ell^2$. Finally, the spatial Fokker-Planck operator is [12,13]

$$D(f) = \partial^2 \langle (\Delta x)^2 \rangle/\partial x^2 f = \partial^2 \langle (\Delta x)^2 \rangle/\partial x^2 D_\eta f. \quad (14)$$

The lowest order approximation to the MDKE (13) includes parallel free-streaming and Coulomb collisions:

$$v_\parallel \partial f_0/\partial \ell_\phi = C(f_0). \quad (15)$$

For long collision lengths λ_e compared to the (periodicity) length of a helical field line ℓ_x, its solution is a Maxwellian distribution constant along magnetic field lines, and hence a function of the local flux function ψ:

$$f_0(\psi, v, t) = n_e(\psi, t) \left(m_e/2\pi T_e(\psi, t)^{3/2} e^{-m_e v^2/2T_e(\psi, t)} \right). \quad (16)$$

Physically, the electron temperature T_e is equilibrated along helical field lines by parallel electron heat conduction. For $\lambda_e < \ell_x$, this process limits the parallel length over which this solution applies to λ_e. Thus, the Maxwellian f_0 in (16) is only applicable for $|\ell| \leq \ell_{f_{\text{el}}} \equiv \min(\ell_x, \lambda_e)$. The dependence of n_e and T_e on time t in (16) allows for their transport time scale evolution.

To obtain an electron energy balance equation one takes the energy ($\int d^3 v m_e v^2/2$) moment of (13) using $f \approx f_0$. In toroidal geometry the helical periodicity length $2\ell_x$ of a rational field line is n times longer than the poloidal periodicity length $2\pi R_0 q$. To take account of these periodicity effects in the sheared slab model and, in particular, the n times a helical field line wraps around the poloidal (periodicity) direction, the $D(f_0)$ operator is also operated on by $\int_{-\ell_x}^{\ell_x} d\ell/2\pi R_0 q$. (Formally, in axisymmetric toroidal geometry this factor emerges [11] from a ballooning representation [11,14] used to preserve the poloidal and helical periodicities for these “flutelike” responses in the vicinity of a rational surface.) Since T_e is only equilibrated over the parallel distance $\ell_{f_{\text{el}}}$, and the maximum length of diffusing field lines is ℓ_{max}, this parallel integration is limited to $-L$ to L, where L is defined in (4) and the net effect is the multiplier M defined in (5). Assuming for simplicity that only an electron temperature gradient is present, one thus obtains:

$$\frac{3}{2} \frac{\partial T_e(x, t)}{\partial t} = \frac{\partial^2}{\partial x^2} \left[\chi_e^{\text{nc}} T_e(x, t) \right] + \frac{Q_e}{n_e}, \quad \chi_e^{\text{nc}} = \frac{3}{2} MD_\eta. \quad (17)$$

in which Q_e is the collisional electron heating. The relevant D_η and η_j (for a toroidal plasma) (neoclassical, superscript nc) electrical resistivity are [11,15]:

$$D_\eta = \frac{\eta_j^{\text{nc}}}{\mu_0}, \quad \eta_j^{\text{nc}} = \frac{1}{\sqrt{2 + Z}} + \frac{\mu_e}{\nu_e}. \quad (18)$$

Here, Z ($\rightarrow Z_{\text{eff}} = \sum n_i Z_i^2/n_e$) is the (effective) ion charge, the reference (perpendicular) resistivity is $\eta_0/\mu_0 \equiv m_e \nu_e/\mu_0 n_e e^2 \approx 1.4 \times 10^3 Z/[T_e(\text{eV})]^{1/2} \text{ m}^2/\text{s}$, and the parallel electron viscosity [15] $\mu_e/\nu_e = [Z + \sqrt{Z^2 - \ln(1 + \sqrt{Z^2})}] f_z/Z f_z^{1.5} f_z$ in the banana
collisionality regime with $f_i \approx 1.46\sqrt{\epsilon} + O(\epsilon^{3/2})$ and $f_e \equiv 1 - f_i$.

Equation (17) is a diffusion-type equation for the electron temperature T_e with a collisional diffusion coefficient χ_{pe}^0. Since $\chi_{\text{pe}}^0 \sim MD_\eta T_e$, T_e relaxes a factor of order M faster than magnetic flux ϕ does [cf., (8) and (17)].

In typical toroidal plasmas where $\lambda_e > \ell_{\text{max}}, \chi_{\text{pe}}^0 = (3/2)\pi n_{\text{max}}\eta_j^0/\mu_0$. For shorter λ_e or near a low order rational surface, the parallel equilibration length is limited by these effects [11], as indicated in (4). Because the distance between a low order rational surface $q^* = m^*/n^*$ and the nearest rational surface with $n = n_{\text{max}}$ is $\delta x^* \approx 1/(n^* n_{\text{max}} q^*) = (\pi \delta_\epsilon/q^*)^{1/2}/n^*$ [or, at a minimum in q, $\delta x_{\text{min}} \approx (2/n^*)^{1/2}(\pi \delta_\epsilon/q^*)^{1/3}$], only the lowest n^* rational surfaces (e.g., $1/1, 3/2, 2/1$) will be isolated enough radially from other n to n_{max} rational surfaces for χ_{pe}^0 to be small ($\sim n^*/\eta_0/\mu_0$) in their vicinity.

The salient and mysterious properties of "anomalous" radial electron heat transport identified in the second paragraph can be interpreted in terms of the collisional model developed in (4), (5), (17), and (18) as follows:

(1) Magnitude.—For a typical Ohmically heated Tokamak fusion test reactor (TFTR) plasma [16] $T_e = 1.2$ keV, $n_e = 3 \times 10^{19}$ m$^{-3}$, $Z_{\text{eff}} = 2$, $R_0 \approx 2.5$ m, $q \approx 1.6$, and $1/q' \approx 0.4$ m at the plasma half-radius ($r/a \approx 0.4/0.8 = 0.5$), which yields $\eta_0/\mu_0 \approx 0.067$ m2/s, $\eta_j^0/\eta_0 \approx 2.2$, $c/\omega_p \approx 10^{-3}$ m, $n_{\text{max}} \approx 11$, and $\lambda_e \approx 300 m > \pi R_0 n_{\text{max}} \approx 140$ m, so that $L = \pi R_0 n_{\text{max}}$, $M = n_{\text{max}} \approx 11$, and the estimated χ_{pe}^0 is 2.5 m2/s ~ χ_{exp}^0. Since this $\chi_{\text{pe}}^0 \sim T_e^{-3/2}$, it becomes less than 1 m2/s for $T_e \approx 2$ keV — and it may then be smaller than possible microturbulence-induced transport.

(2) Ratio to D_η.—For this TFTR case one has $\chi_{\text{pe}}^0 / D_\eta = (3/2) M \approx 17 \gg 1$.

(3) Radial variation.—In the usually applicable "collisional" regime (\lambda_e > \pi R_0 q n_{\text{max}}), $\chi_{\text{pe}}^0 \sim T_e^{-3/2}$ increases as T_e decreases from the hot plasma core toward the cooler edge.

(4) Collisionality regime.—Tokamak plasmas will Ohmically heat until T_e is limited by χ_{pe}^0, which is relevant only if $\lambda_e > \pi R_0 q$ (banana-platue collisional regime [5]).

(5) Density scaling.—In "collisional" high density plasmas with $\pi R_0 q < \lambda_e < \pi R_0 n_{\text{max}}, \chi_{\text{pe}}^0 \sim (c/\omega_p)^2 \approx 1/n_e$ and $T_e \approx c^2/4 \chi_{\text{pe}}^0 \approx 0.27(n_e/10^{20}$ m$^{-3}$) $a^2 R_0 q$ for $T_e^{1/2} \approx (500$ eV)$^{1/2}$, which is an Alcator-like energy confinement scaling law [7].

(6) Low order rational surfaces.—As indicated in (4), L and hence χ_{pe}^0 are much smaller near low order ($n^* = 1, 2$) rational surfaces, particularly when q is near a minimum.

(7) Near separatrix.—On closed field lines just inside a magnetic separatrix, q and q' are large, and n_{max} and χ_{pe}^0 are reduced [11].